Abstract
In this paper we present a genuinely two-dimensional HLLC Riemann solver. On logically rectangular meshes, it accepts four input states that come together at an edge and outputs the multi-dimensionally upwinded fluxes in both directions. This work builds on, and improves, our prior work on two-dimensional HLL Riemann solvers. The HLL Riemann solver presented here achieves its stabilization by introducing a constant state in the region of strong interaction, where four one-dimensional Riemann problems interact vigorously with one another. A robust version of the HLL Riemann solver is presented here along with a strategy for introducing sub-structure in the strongly-interacting state. Introducing sub-structure turns the two-dimensional HLL Riemann solver into a two-dimensional HLLC Riemann solver. The sub-structure that we introduce represents a contact discontinuity which can be oriented in any direction relative to the mesh. [Display omitted] The Riemann solver presented here is general and can work with any system of conservation laws. We also present a second order accurate Godunov scheme that works in three dimensions and is entirely based on the present multidimensional HLLC Riemann solver technology. The methods presented are cost-competitive with traditional higher order Godunov schemes.The two-dimensional HLLC Riemann solver is shown to work robustly for Euler and Magnetohydrodynamic (MHD) flows. Several stringent test problems are presented to show that the inclusion of genuinely multidimensional effects into higher order Godunov schemes indeed produces some very compelling advantages. For two dimensional problems, we were routinely able to run simulations with CFL numbers of ∼0.7, with some two-dimensional simulations capable of reaching higher CFL numbers. For three dimensional problems, CFL numbers as high as ∼0.6 were found to be stable. We show that on resolution-starved meshes, the scheme presented here outperforms unsplit second order Godunov schemes that are based on conventional one-dimensional Riemann solver technology. Strong discontinuities are shown to propagate very isotropically using the methods presented here. The present Riemann solver provides an elegant resolution to the problem of obtaining multi-dimensionally upwinded electric fields in MHD without resorting to a doubling of the dissipation in each dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.