Abstract

In several implementations of Sequential Monte Carlo (SMC) methods it is natural and important, in terms of algorithmic efficiency, to exploit the information of the history of the samples to optimally tune their subsequent propagations. In this article we provide a carefully formulated asymptotic theory for a class of such adaptive SMC methods. The theoretical framework developed here will cover, under assumptions, several commonly used SMC algorithms [Chopin, Biometrika 89 (2002) 539-551; Jasra et al., Scand. J. Stat. 38 (2011) 1-22; Schafer and Chopin, Stat. Comput. 23 (2013) 163- 184]. There are only limited results about the theoretical underpinning of such adaptive methods: We will bridge this gap by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT) for some of these algorithms. The latter seems to be the first result of its kind in the literature and provides a formal justification of algorithms used in many real data contexts [Jasra et al. (2011); Schafer and Chopin (2013)]. We establish that for a general class of adaptive SMC algorithms [Chopin (2002)], the asymptotic variance of the estimators from the adaptive SMC method is identical to a limiting SMC algorithm which uses ideal proposal kernels. Our results are supported by application on a complex high-dimensional posterior distribution associated with the Navier-Stokes model, where adapting highdimensional parameters of the proposal kernels is critical for the efficiency of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.