Abstract

In this note, we prove a controllability result for entropy solutions of scalar conservation laws on a star-shaped graph. Using a Lyapunov-type approach, we show that, under a monotonicity assumption on the flux, if u and v are two entropy solutions corresponding to different initial data and same in-flux boundary data (at the exterior nodes of the star-shaped graph), then u ≡ v for a sufficiently large time. In order words, we can drive u to the target profile v in a sufficiently large control time by inputting the trace of v at the exterior nodes as in-flux boundary data for u. This result can also be shown to hold on tree-shaped networks by an inductive argument. We illustrate the result with some numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.