Abstract
This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have