Abstract

The proposition that subunits of a chromatid are continuous in a directional sense has been tested by observing the behaviour of induced ring chromosomes in Vicia faba. On the simplest hypothesis, that the subunits are the uninterrupted complementary strands of the DNA molecule, the polarity of rejoining should result in free separation of rings following replication in successive cell cycles. Centric and acentric ring chromosomes were separately assessed in both diploid and colchicine-accumulated tetraploid metaphase cells of primary root tips. Contrary to expectation large numbers of single and interlocked rings were observed in both cell cycles. Spontaneous sister chromatid exchanges and other breakage-reunion events can produce the configurations seen; with the postulated level of sister chromatid exchange equating that determined autoradiographically in rod chromosomes of V. faba. Unless the replication of ring chromosomes produces conditions unusual in rod chromosome replication, spontaneous breakage is probably common in replicating or post replication Vicia chromosomes. — A fundamental difference exists between the behaviour of centric and acentric ring chromosomes. Acentric ring chromosomes behave as if the chromatid arm were one DNA molecule, or a number of DNA molecules with identical directional sense. However, centric ring chromosomes behave as if there were a difference at the centromere in at least one (probably the metacentric) chromosome of the Vicia complement. That is, the two “duplication-segregation” subunits which extend the length of the chromosome, may contain a change in polarity at the centromere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call