Abstract
With the goal of giving evidence for the theoretical consistency of the Hořava theory, we perform a Hamiltonian analysis on a classical model suitable for analyzing its effective dynamics at large distances. The model is the lowest-order truncation of the Hořava Theory with the detailed-balance condition. We consider the pure gravitational theory without matter sources. The model has the same potential term of general relativity, but the kinetic term is modified by the inclusion of an arbitrary coupling constant λ. Since this constant breaks the general covariance under spacetime diffeomorphisms, it is believed that arbitrary values of λ deviate the model from general relativity. We show that this model is not a deviation at all, instead it is completely equivalent to general relativity in a particular partial gauge fixing for it. In doing this, we clarify the role of a second-class constraint of the model.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have