Abstract
The present work extends Kolmogorov’s micro-scales to a large family of viscoplastic fluids. The new micro-scales, combined with Gioia and Chakaborty’s (2006) friction phenomenology theory, lead to a unified framework for the description of the friction coefficient in turbulent flows. A resulting Blasius-type friction equation is tested against some available experimental data and shows good agreement over a significant range of Hedstrom and Reynolds numbers. The work also comments on the role of the new expression as a possible benchmark test for the convergence of DNS simulations. The formula also provides limits for the maximum drag reduction of viscoplastic flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.