Abstract

The computational power of self-stabilizing distributed systems is examined. Assuming availability of any number of processors, each with (small) constant size memory we show that any computable problem can be realized in a self-stabilizing fashion. The result is derived by presenting a distributed system which tolerates transient faults and simulates the execution of a Turing machine. The total amount of memory required by the distributed system is equal to the memory used by the Turing machine (up to a constant factor).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.