Abstract
— We consider the complexity of integer base expansions of algebraic irrational numbers from a computational point of view. We show that the Hartmanis–Stearns problem can be solved in a satisfactory way for the class of multistack machines. In this direction, our main result is that the base-b expansion of an algebraic irrational real number cannot be generated by a deterministic pushdown automaton. We also confirm an old claim of Cobham proving that such numbers cannot be generated by a tag machine with dilation factor larger than one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.