Abstract

In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of deciding whether or not a given graph has a matching cut, which is known to be NP-complete even when restricted to bipartite graphs. It has been proved that Matching Cut is polynomially solvable for graphs of diameter two. In this paper, we show that, for any fixed integer d geq 4, Matching Cut is NP-complete in the class of graphs of diameter d. This almost resolves an open problem posed by Borowiecki and Jesse-Jozefczyk in [Matching cutsets in graphs of diameter 2, Theoretical Computer Science 407 (2008) 574-582]. We then show that, for any fixed integer d geq 5, Matching Cut is NP-complete even when restricted to the class of bipartite graphs of diameter d. Complementing the hardness results, we show that Matching Cut is in polynomial-time solvable in the class of bipartite graphs of diameter at most three, and point out a new and simple polynomial-time algorithm solving Matching Cut in graphs of diameter 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.