Abstract
The minimum all-ones problem and the connected odd dominating set problem were shown to be NP-complete in different papers for general graphs, while they are solvable in linear time (or trivial) for trees, unicyclic graphs, and series-parallel graphs. The complexity of both problems when restricted to bipartite graphs was raised as an open question. Here we solve both problems. For this purpose, we introduce the related decision problem of the existence of an odd dominating set without isolated vertices, and study its complexity. Our main result shows that this new problem is NP-complete, even when restricted to bipartite graphs. We use this result to deduce that the minimum all-ones problem and the connected odd dominating set problem are also NP-complete for bipartite graphs. We show that all three problems are solvable in linear time for graphs with bounded treewidth. We also show that the new problem remains NP-complete when restricted to other graph classes, e.g., planar graphs, graphs with girth at least five, and graphs with a small maximum degree, in particular 3-regular graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.