Abstract

The continued fraction expansion of an irrational number $\alpha$ is eventually periodic if and only if $\alpha$ is a quadratic irrationality. However, very little is known regarding the size of the partial quotients of algebraic real numbers of degree at least three. Because of some numerical evidence and a belief that these numbers behave like most numbers in this respect, it is often conjectured that their partial quotients form an unbounded sequence. More modestly, we may expect that if the sequence of partial quotients of an irrational number $\alpha$ is, in some sense, simple, then $\alpha$ is either quadratic or transcendental. The term can of course lead to many interpretations. It may denote real numbers whose continued fraction expansion has some regularity, or can be produced by a simple algorithm (by a simple Turing machine, for example), or arises from a simple dynamical system... The aim of this paper is to present in a unified way several new results on these different approaches of the notion of simplicity/complexity for the continued fraction expansion of algebraic real numbers of degree at least three.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.