Abstract

Abstract This paper focuses on the complex version of the Cahn-Hilliard-Oono equation with Neumann boundary conditions, which is used to capture long-range nonlocal interactions in the phase separation process. The first part of the paper establishes the well-posedness of the corresponding stationary problem associated with the equation. Subsequently, a numerical model is constructed using a finite element discretization in space and a backward Euler scheme in time. We demonstrate the existence of a unique solution to the stationary problem and obtain error estimates for the numerical solution. This, in turn, serves as proof of the convergence of the semi-discrete scheme to the continuous problem. Finally, we establish the convergence of the fully discrete problem to the semi-discrete formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.