Abstract
Abstract We study the collapsing of Calabi–Yau metrics and of Kähler–Ricci flows on fiber spaces where the base is smooth. We identify the collapsed Gromov–Hausdorff limit of the Kähler–Ricci flow when the divisorial part of the discriminant locus has simple normal crossings. In either setting, we also obtain an explicit bound for the real codimension-2 Hausdorff measure of the Cheeger–Colding singular set and identify a sufficient condition from birational geometry to understand the metric behavior of the limiting metric on the base.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have