Abstract

The three-input \TOFFOLI\ gate is the workhorse of circuit synthesis for classical logic operations on quantum data, e.g., reversible arithmetic circuits. In physical implementations, however, \TOFFOLI\ gates are decomposed into six \CNOT\ gates and several one-qubit gates. Though this decomposition has been known for at least 10 years, we provide here the first demonstration of its \CNOT-optimality. We study three-qubit circuits which contain less than six \CNOT\ gates and implement a block-diagonal operator, then show that they implicitly describe the cosine-sine decomposition of a related operator. Leveraging the canonical nature of such decompositions to limit one-qubit gates appearing in respective circuits, we prove that the $n$-qubit analogue of the \TOFFOLI\ requires at least $2n$ \CNOT\ gates. Additionally, our results offer a complete classification of three-qubit diagonal operators by their \CNOT -cost, which holds even if ancilla qubits are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.