Abstract
In this paper, we study locally projectively flat Finsler metrics with constant flag curvature K. We prove those are totally determined by their behaviors at the origin by solving some nonlinear PDEs. The classifications when K=0, K=−1 and K=1 are given respectively in an algebraic way. Further, we construct a new projectively flat Finsler metric with flag curvature K=1 determined by a Minkowski norm with double square roots at the origin. As an application of our main theorems, we give the classification of locally projectively flat spherical symmetric Finsler metrics much easier than before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.