Abstract

This paper derives asymptotic approximations to the power of Cramer–von Mises (CvM) style tests for inference on a finite dimensional parameter defined by conditional moment inequalities in the case where the parameter is set identified. Combined with power results for Kolmogorov–Smirnov (KS) tests, these results can be used to choose the optimal test statistic, weighting function and, for tests based on kernel estimates, kernel bandwidth. The results show that, in the setting considered here, KS tests are preferred to CvM tests, and that a truncated variance weighting is preferred to bounded weightings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.