Abstract
We study the space of derivations for some finite-dimensional evolution algebras, depending on the twin partition of an associated directed graph. For evolution algebras with a twin-free associated graph, we prove that the space of derivations is zero. For the remaining families of evolution algebras, we obtain sufficient conditions under which the study of such a space can be simplified. We accomplish this task by identifying the null entries of the respective derivation matrix. Our results suggest how strongly the associated graph’s structure impacts in the characterization of derivations for a given evolution algebra. Therefore, our approach constitutes an alternative to the recent developments in the research of this subject. As an illustration of the applicability of our results, we provide some examples and we exhibit the classification of the derivations for non-degenerate irreducible three-dimensional evolution algebras.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.