Abstract
The structural constants of an evolution algebra are given by a quadratic matrix. In this work we establish an equivalence between nil, right nilpotent evolution algebras and evolution algebras defined by upper triangular matrices. The classification of 2-dimensional complex evolution algebras is obtained. For an evolution algebra with a special form of the matrix, we describe all its isomorphisms and their compositions. We construct an algorithm running under Mathematica which decides if two finite dimensional evolution algebras are isomorphic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.