Abstract

Let (X,Δ) be a pair. We study how the values of the log Kodaira dimension and log plurigenera relates to surjectivity and birationality of the Albanese map and the Albanese morphism of X in both characteristic 0 and characteristic p>0. In particular, we generalize some well known results for smooth varieties in both zero and positive characteristic to varieties with various types of singularities. Moreover, we show that if X is a normal projective threefold in characteristic p>0, the coefficients of the components of Δ are ≤1 and -(K X +Δ) is semiample, then the Albanese morphism of X is surjective under certain assumptions on p and the singularities of the general fibers of the Albanese morphism. This is a positive characteristic analogue in dimension 3 of a result of Zhang on a conjecture of Demailly–Peternell–Schneider.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.