Abstract

Radiochromic film is a dosimeter of choice in applications requiring high spatial resolution, two dimensional measurements, or minimum perturbation of the beam fluence. Since the measurement uncertainty in Gafchromic film dosimetry is thought to be significant compared to that of ionization chambers, a rigorous method to evaluate measurement uncertainties is desired. This article provides a method that takes into account the correlation between fit parameters as well as single dose values in order to obtain accurate uncertainties in absolute and relative measurements. A complete portrait of all sources of uncertainty in Gafchromic film dosimetry is given. The parametrization of variance as a function of the number of averaged pixels is obtained in order to accurately predict the uncertainty as a function of the size of the region of interest. The choice of functional form for the sensitometric curve is based on four criteria and a convergence of global net optical density uncertainty to 0.0013 is demonstrated. A minimum number of 12 points is recommended to characterize the sensitometric curve to a sufficient precision on the uncertainty estimation. Uncertainty levels of 0.9% on absolute dose measurements and 0.45% on relative measurements are achieved using a 12-point calibration curve with 220 cGy and repeating measurements five times. Uncertainties of 0.8% and 0.4% are achievable when using 35 points during film characterization. Ignoring covariance terms is shown to lead to errors in the estimation of uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.