Abstract

We consider a nonlinear stochastic heat equation $\partial_tu=\frac{1}{2}\partial_{xx}u+\sigma(u)\partial_{xt}W$, where $\partial_{xt}W$ denotes space-time white noise and $\sigma:\mathbf {R}\to \mathbf {R}$ is Lipschitz continuous. We establish that, at every fixed time $t>0$, the global behavior of the solution depends in a critical manner on the structure of the initial function $u_0$: under suitable conditions on $u_0$ and $\sigma$, $\sup_{x\in \mathbf {R}}u_t(x)$ is a.s. finite when $u_0$ has compact support, whereas with probability one, $\limsup_{|x|\to\infty}u_t(x)/({\log}|x|)^{1/6}>0$ when $u_0$ is bounded uniformly away from zero. This sensitivity to the initial data of the stochastic heat equation is a way to state that the solution to the stochastic heat equation is chaotic at fixed times, well before the onset of intermittency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call