Abstract

Galaxy clusters host the largest particle accelerators in the Universe: Shock waves in the intracluster medium (ICM), a hot and ionised plasma, that accelerate particles to high energies. Radio observations pick up synchrotron emission in the ICM, proving the existence of accelerated cosmic-ray electrons. However, a sign of cosmic-ray protons, in form of γ-rays. remains undetected. This is know as the missingγ-ray problem and it directly challenges the shock acceleration mechanism at work in the ICM.Over the last decade, theoretical and numerical studies focused on improving our knowledge on the microphysics that govern the shock acceleration process in the ICM. These new models are able to predict a γ-ray signal, produced by shock accelerated cosmic-ray protons, below the detection limits set modern γ-ray observatories. In this review, we summarise the latest advances in solving the missing γ-ray problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.