Abstract
We study the large-data Cauchy problem for Boltzmann equations with general collision kernels. We prove that sequences of solutions which satisfy only the physically natural a priori bounds converge weakly in L' to a solution. From this stability result we deduce global existence of a solution to the Cauchy problem. Our method relies upon recent compactness results for velocity averages, a new formulation of the Boltzmann equation which involves nonlinear normalization and an analysis of subsolutions and supersolutions. It allows us to overcome the lack of strong a priori estimates and define a meaningful collision operator for general configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.