Abstract
When a random field (Xt; t 2 R2) is thresholded on a given level u, the excursion set is given by its indicator 1[u;1)(Xt). The purpose of this work is to study functionals (as established in stochastic geometry) of these random excursion sets, as e.g. the capacity functional as well as the second moment measure of the boundary length. It extends results obtained for the one-dimensional case to the two-dimensional case, with tools borrowed from crossings theory, in particular Rice methods, and from integral and stochastic geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.