Abstract

The paper investigates waveguides of constant cross-section with ideally conducting walls and arbitrary filling. The problem of finding the normal modes of a waveguide in a full vector formulation has been set and discretized. In the framework of numerical experiments, the guiding and evanescent modes of the waveguide are calculated for several variants of the fillings. The problem of diffraction of the normal waveguide mode incident on the joint of two waveguides, the cross-sections of which coincide, and the filling at the junction varies abruptly, is set and discretized. The results of numerical experiments for specific configurations of waveguide joints are presented, and the transmission and reflection coefficients of the guided modes are calculated. The solution of the Maxwell equations system is based on the decomposition of fields with the help of four potentials, and in the present work a symbolic-numerical method is realized that uses this approach. The numerical experiments presented in this paper show that the proposed approach and the method on its basis allow the effective calculation of various characteristics of waveguide systems. The adequacy of the approach used is also evidenced by comparing the results obtained with the results of V.V. Shevchenko for the diffraction problem at the junction of two open waveguides The symbolic-numerical method used in the work is implemented in the computer algebra system Maple, in particular, the calculations of matrix elements in the framework of the incomplete Galerkin method are carried out in symbolic form to accelerate further calculations using numerical methods.

Highlights

  • Символьно-численный метод, используемый в работе, реализован в системе компьютерной алгебры Maple, в частности расчёты матричных элементов в рамках неполного метода Галёркина проведены в символьном виде для ускорения дальнейших расчётов с использованием численных методов

  • In the framework of numerical experiments, the guiding and evanescent modes of the waveguide are calculated for several variants of the fillings

  • The numerical experiments presented in this paper show that the proposed approach and the method on its basis allow the effective calculation of various characteristics of waveguide systems

Read more

Summary

Введение

Распространение электромагнитных волн в полых волноводах было описано в символьном виде в ставшей уже классической работе [1]. Исследование закрытых волноводов со сложным заполнением ε и μ требует применения численных методов [2]. В настоящей работе предложенный подход применяется к 1) расчёту нормальных мод для модельных задач и 2) расчёту коэффициентов отражения и прохождения волноводных мод на стыке двух волноводов. Результаты численных экспериментов верифицировались в работе путём сравнения результатов расчёта модельных примеров в рамках двух независимых реализаций метода четырёх потенциалов, первая реализация разработана в системе компьютерной алгебры Sage, вторая — в Maple. Полученные в рамках численных экспериментов по расчёту прохождения излучения через стык волноводов, сравнивались с результатами расчётов аналогичной конфигурации методом поперечных сечений, полученных в работе Шевченко [7]. Вычисления проводились в системах компьютерной алгебры Maple, Sage: матричные коэффициенты задачи на собственные значения вычислялись символьно, задача на собственные значения решалась численно с использованием встроенных в систему компьютерной алгебры численных методов

Описание поля в волноводе при помощи четырёх потенциалов
Дискретизация уравнений Максвелла
Волновод с прямоугольной вставкой
Нормальные моды
Задача рассеяния на стыке двух волноводов
Численное решение задачи дифракции на стыке закрытых волноводов
Численное решение задачи дифракции на стыке открытых планарных волноводов
Заключение

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.