Abstract

This article aims to reveal the mean-square convergence rate of the backward Euler method (BEM) for a generalized Ait-Sahalia interest rate model with Poisson jumps. The main difficulty in the analysis is caused by the non-globally Lipschitz drift and diffusion coefficients of the model. We show that the BEM preserves the positivity of the original problem. Furthermore, we successfully recover the mean-square convergence rate of order one-half for the BEM. The theoretical findings are accompanied by several numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.