Abstract
In this paper, we introduce a class of stochastic neural networks with fractional Brownian motion (fBm) and Poisson jumps. We also concern mean-square dissipativity of numerical methods applied to a class of stochastic neural networks with fBm and jumps. The conditions under which the underlying systems are mean-square dissipative are considered. It is shown that the mean-square dissipativity is preserved by the compensated split-step backward Euler method and compensated backward Euler method without any restriction on stepsize, while the split-step backward Euler method and backward Euler method could reproduce mean-square dissipativity under a stepsize constraint. The results indicate that compensated numerical methods achieve superiority over non-compensated numerical methods in terms of mean-square dissipativity. Finally, an example is given for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.