Abstract

Global Navigation Satellite System (GNSS) Receiver Autonomous Integrity Monitoring (RAIM) is essential for safety-of-life and liability critical applications. This paper discusses two fundamentally different ways to assess the integrity risk of an operation with RAIM, based on a different amount of information available: the expected (or average) performance that is computed using the GNSS models only and the real-time (or actual) performance, which also uses information on the internal status of a GNSS receiver. It is shown both theoretically and by simulation that the real-time integrity risk significantly exceeds the expected risk after the detection and exclusion of a failing satellite. Therefore, while most published RAIM algorithms base their performance assessment on the expected performance only, this is only correct when the requirements allow the risk evaluation to be averaged over multiple operations. However, when the GNSS integrity requirement is to be applied on a ‘per operation’ basis, real-time integrity measures are more appropriate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call