Abstract

This paper presents an advanced control strategy based on Fractional-Order Sliding Mode Control (FO-SMC), which introduces a robust solution to significantly improve the reliability of robotic manipulator systems and increase its control performance. The proposed FO-SMC strategy includes a two-key term-based Fractional Sliding Function (FSF) that presents the main contribution of this work. Additionally, a fractional-order-based Lyapunov stability analysis is developed for a class of nonlinear systems to guarantee the asymptotic stability of the closed loop system. Four FSF-based versions of the designed FO-SMC are studied and discussed. Various scenarios of the proposed control strategy are tested on a 3-degree-of-freedom SCARA robotic arm and compared to recent FO-SMC works, demonstrating the effectiveness of the new proposed control strategy to (i) ensure the asymptotic stability, (ii) achieve a smooth start-up, (iii) cancel the static error, giving a good tracking trajectory, and (iv) reduce the control torques, yielding a consumed energy minimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call