Abstract

We consider the Landau-Lifshitz equation on a three-dimensional torus. The equation is reduced to the form of the Euler equation for the geodesic left-invariant metric on the infinite-dimensional Lie algebra of the current group. The group of currents is given by a pointwise mapping of the three-dimensional torus into a three-dimensional orthogonal group. In Lie algebra we use the non-standard commutator introduced earlier. The solutions of the Landau-Lifshitz equation can be expanded in terms of the orthonormal basis of the left-invariant metric in the currents algebra. For the expansion coefficients of the solution of the Landau-Lifshitz equation, the explicit form of the evolution equations is deduced in the framework of the constructed model. To do this, we use the expressions obtained earlier for the sums of the adjoint and coadjoint action operators in an infinite-dimensional Lie algebra of currents with nonstandard commutator. The compactness property of the indicated sum operators makes it possible to obtain the asymptotic form of the Landau-Lifshitz equation on a threedimensional torus. Evolution equations are found on the subspace of flows consisting of vector fields whose Fourier expansions contain only simple harmonics of the form cos (kØ) Such vector fields form a subalgebra of the currents algebra which is also closed under the action of coadjoint operators. In this case, an arbitrary Landau-Lifshitz equation for which the vector of initial conditions lies in this subalgebra remains in it for all t for which this solution is defined. We note that to study the Landau-Lifshitz equation the currents algebra with the standard commutator turned out to be ineffective: in particular, the Landau-Lifshitz equation is not an Euler equation on the current algebra with a standard commutator. Thus, for the Landau-Lifshitz equation on the three-dimensional torus, the explicit form of the evolution equations for the coefficients of the Fourier expansion of its solutions by means of operators representing the sum of the operators of the adjoint and co-adjoint action of the current algebra on a three-dimensional torus with nonstandard commutator is obtained. Moreover, it is the property of compactness of the indicated sum operators (while, separately, their components, the operator of the adjoint action operator as well as the coadjoint one are not even continuous) made it possible to obtain the indicated asymptotic form.

Highlights

  • The equation is reduced to the form of the Euler equation for the geodesic left-invariant metric on the infinite-dimensional Lie algebra of the current group

  • For the expansion coefficients of the solution of the Landau-Lifshitz equation, the explicit form of the evolution equations is deduced in the framework of the constructed model

  • The compactness property of the indicated sum operators makes it possible to obtain the asymptotic form of the Landau-Lifshitz equation on a threedimensional torus

Read more

Summary

НА ТРЕХМЕРНОМ ТОРЕ

Уравнение приводится к форме уравнения Эйлера на геодезические левоинвариантной метрики в бесконечномерной алгебре Ли группы токов. Решения уравнения Ландау – Лифшица разлагаются по ортонормированному базису левоинвариантной метрики в алгебре токов. Для коэффициентов разложения решения уравнения Ландау – Лифшица в рамках построенной модели вычисляется явный вид эволюционных уравнений. Для уравнения Ландау – Лифшица на трехмерном торе вычислен явный вид эволюционных уравнений на коэффициенты Фурье-разложений его решений при помощи операторов, представляющих собой сумму операторов присоединенного и коприсоединенного действия алгебры токов на трехмерном торе с нестандартным коммутатором. Для изучения уравнения Ландау – Лифшица алгебра токов со стандартным коммутатором (1) оказалась неэффективной. В частности, уравнение Ландау – Лифшица (Л-Л) не является уравнением Эйлера на алгебре токов со стандартным коммутатором [1]. ВЫЧИСЛЕНИЕ ЭВОЛЮЦИОННЫХ УРАВНЕНИЙ НА КОЭФФИЦИЕНТЫ РАЗЛОЖЕНИЯ РЕШЕНИЙ УРАВНЕНИЯ ЛАНДАУ – ЛИФШИЦА. Доказательство проводится путем раскрытия уравнений (12) на коэффициенты разложения (11) с использованием формул [6, (18)–(19)]

НА КОЭФФИЦИЕНТЫ РАЗЛОЖЕНИЯ РЕШЕНИЙ
СПИСОК ЛИТЕРАТУРЫ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call