Abstract

In this paper, the Homotopy perturbation Laplace method is implemented to investigate the solution of fractional-order Whitham–Broer–Kaup equations. The derivative of fractional-order is described in Caputo’s sense. To show the reliability of the suggested method, the solution of certain illustrative examples are presented. The results of the suggested method are shown and explained with the help of its graphical representation. The solutions of fractional-order problems as well as integer-order problems are determined by using the present technique. It has been observed that the obtained solutions are in significant agreement with the actual solutions to the targeted problems. Computationally, it has been analyzed that the solutions at different fractional-orders have a higher rate of convergence to the solution at integer-order of the derivative. Due to the analytical analysis of the problems, this study can further modify the solution of other fractional-order problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.