Abstract

We study the asymptotic behaviour of global solutions of some nonlinear integral equations related to some Caputo fractional initial value problems. We consider problems of fractional order between 0 and 1 and of order between 1 and 2, each in two cases: when the nonlinearity depends only on the function, and when the nonlinearity also depends on fractional derivatives of lower order. Our main tool is a new Gronwall inequality for integrals with singular kernels, which we prove here, and a related boundedness property of a fractional integral of an \(L^1[0,\infty)\) function. For more information see https://ejde.math.txstate.edu/Volumes/2021/80/abstr.html

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.