Abstract

We estimate the time that a point or set, respectively, requires to approach the attractor of a radially symmetric gradient type stochastic differential equation driven by small noise. Here, both of these times tend to infinity as the noise gets small. However, the rates at which they go to infinity differ significantly. In the case of a set approaching the attractor, we use large deviation techniques to show that this time increases exponentially. In the case of a point approaching the attractor, we apply a time change and compare the accelerated process to a process on the sphere and obtain that this time increases merely linearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.