Abstract

A new approach to the construction of mean-square numerical methods for the solution of stochastic differential equations with small noises is proposed. The approach is based on expanding the exact solution of the system with small noises in powers of time increment and small parameter. The theorem on the mean-square estimate of method errors is proved. Various efficient numerical schemes are derived for a general system with small noises and for systems with small additive and small colored noises. The proposed methods are tested by calculation of Lyapunov exponents and simulation of a laser Langevin equation with multiplicative noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.