Abstract

BackgroundPlant discrimination is of relevance for taxonomic, evolutionary, breeding and nutritional studies. To this purpose, evidence is reported to demonstrate TBP (Tubulin-Based-Polymorphism) as a DNA-based method suitable for assessing plant diversity.ResultsExploiting one of the most valuable features of TBP, that is the convenient and immediate application of the assay to groups of individuals that may belong to different taxa, we show that the TBP method can successfully discriminate different agricultural species and their crop wild relatives within the Papilionoideae subfamily. Detection of intraspecific variability is demonstrated by the genotyping of 27 different accessions of Phaseolus vulgaris.ConclusionsThese data illustrate TBP as a useful and versatile tool for plant genotyping. Since its potential has not yet been fully appreciated by the scientific community, we carefully report all the experimental details of a successful TBP protocol, while describing different applications, so that the method can be replicated in other laboratories.

Highlights

  • Plant discrimination is of relevance for taxonomic, evolutionary, breeding and nutritional studies

  • Crop wild relatives Unique and distinctive genomic profiles were obtained by applying the capillary electrophoresis (CE)-Tubulin-Based Polymorphism (TBP) analysis to each of the species reported in the group 1 of Table 1, representative of 17 different genera of the large Papilionoideae subfamily

  • This allowed for rapid genotyping of forty-three different legume accessions (39 from the first experimental group plus sample ARY 39 from the second and samples PlN, PvP and Pv42 from the third group) that included wild germplasm (CWR) and cultivated crops, as well as local ecotypes with different chromosome numbers and ploidy levels (Additional file 2)

Read more

Summary

Introduction

Plant discrimination is of relevance for taxonomic, evolutionary, breeding and nutritional studies. SRAP and CDDP show several advantages such as highly resolved and scorable banding patterns, obtained by standard PCR reactions which require no further laboratory treatment, no need for nucleotide sequencing of the molecular markers, a number of amplicons that correlates quite well with the ploidy level and high interspecies transferability. Their major drawback is the failure of detecting variation in highly inbred species, sometime counterbalanced by their success in the recognition of hybrids origin. These kind of markers can take advantage from the random distribution in the genome of members of a gene family [16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call