Abstract

The problem of anomalously high levels of flicker noise observed in the normal state of the high-temperature superconductors is addressed. It is argued that the anomaly is the result of incorrect normalization of the power spectra according to the Hooge formula. A careful analysis of the available experimental data is given, which shows that the scaling of the spectral power with sample size is essentially different from the inverse proportionality. It is demonstrated that the measured spectra obey the law given by the recently proposed quantum theory of fundamental flicker noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call