Abstract
In this paper we consider several nonlinear systems of algebraic equations which can be called "Prony-type". These systems arise in various reconstruction problems in several branches of theoretical and applied mathematics, such as frequency estimation and nonlinear Fourier inversion. Consequently, the question of stability of solution with respect to errors in the right-hand side becomes critical for the success of any particular application. We investigate the question of "maximal possible accuracy" of solving Prony-type systems, putting stress on the "local" behavior which approximates situations with low absolute measurement error. The accuracy estimates are formulated in very simple geometric terms, shedding some light on the structure of the problem. Numerical tests suggest that "global" solution techniques such as Prony's algorithm and ESPRIT method are suboptimal when compared to this theoretical "best local" behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.