Abstract

Simple strain-rate viscoelasticity models of isotropic soft solid are introduced. The constitutive equations account for finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation. A nonlinear viscous wave equation for the shear strain is obtained exactly and corresponding one-way Burgers-type equations are derived by making standard approximations. Analysis of the travelling wave solutions shows that these partial differential equations produce distinct solutions, and deviations are exacerbated when wave amplitudes are not arbitrarily small. In the elastic limit, the one-way approximate wave equation can be linked to simple wave theory and shock wave theory, thus, allowing direct error measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.