Abstract
In this correspondence, we provide a multiple hypothesis test to detect the number of latent noncircular signals in a complex Gaussian random vector. Our method sequentially tests the results of individual generalized likelihood ratio test (GLRT) statistics with known asymptotic distributions to form the multiple hypothesis detector. Specifically, we are able to set a threshold yielding a precise probability of error. This test can be used to statistically determine if a given complex observation is circular Gaussian, and if not, how many latent signals in the observation are noncircular. Simulations are used to quantify the performance of the detector as compared to a detector based on the minimum description length (MDL) criterion. The utility of the detector is shown by applying it to a beamforming application using independent component analysis (ICA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.