Abstract
In this paper the track initiation problem is formulated as multiple composite hypothesis testing using maximum likelihood estimation with probabilistic data association (ML-PDA). The hypothesis selection is based on the minimum description length (MDL) criterion. We first review some well-known approaches for statistical model selection and the advantage of the MDL criterion. Then we present one-dimensional examples to illustrate the MDL criterion used in multiple composite hypothesis testing and the performance limit of the ML-PDA for track initiation is interpreted in terms of the sharpness of the hypothesis testing. Finally, we apply the MDL approach for the detection and initiation of tracks of incoming tactical ballistic missiles in the exo-atmospheric phase using a surface-based electronically scanned array (ESA) radar. The targets are characterized by low signal-to-noise ratio (SNR), which leads to low detection probability and high false alarm rate. The target acquisition problem is formulated using a batch of radar scans to detect the presence of up to two targets. The ML-PDA estimator is used to initiate the tracks assuming the target trajectories follow a deterministic state propagation. The approximate MDL criterion is used to determine the number of valid tracks in a surveillance region. The detector and estimator are shown to be effective even at 4.4 dB average SNR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.