Abstract

Test generation procedures attempt to assign values to the inputs of a circuit so as to detect target faults. We study a complementary view whereby the goal is to identify values that should not be assigned to inputs in order not to prevent faults from being detected. We describe a procedure for computing input cubes (or incompletely specified input vectors) that should be avoided during test generation for target faults. We demonstrate that avoiding such input cubes leads to the detection of target faults after the application of limited numbers of random input vectors. This indicates that explicit test generation is not necessary once certain input values are precluded. Potential uses of the computed input cubes are in a test generation procedure to reduce the search space, and during built-in test generation to preclude input vectors that will not lead to the detection of target faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.