Abstract

The analytical solution in the fully developed region of a slip flow in a circular microtube with constant wall temperature is obtained to verify the conventional temperature jump boundary condition when both viscous dissipation (VD) and substantial derivative of pressure (SDP) terms are included in the energy equation. Although the shear work term is not included in the conventional temperature jump boundary condition explicitly, it is verified that the conventional temperature jump boundary condition is valid for a slip flow in a microchannel with constant wall temperature when both viscous dissipation and substantial derivative of pressure terms are included in the energy equation. Numerical results are also obtained for a slip flow in a developing region of a circular tube. The results showed that the maximum heat transfer rate decreases with increasing Mach number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.