Abstract

This article delves into the spectral problem associated with a multiple differentiation operator that features an integral perturbation of boundary conditions of one specific type, namely, regular but not strengthened regular. The integral perturbation is characterized by the function px, which belongs to the space L20,1. The concept of problems involving integral perturbations of boundary conditions has been the subject of previous studies, and the spectral properties of such problems have been examined in various early papers. What sets the problem under consideration apart is that the system of eigenfunctions for the unperturbed problem (when px≡0) lacks the property of forming a basis. To address this, a characteristic determinant for the spectral problem has been constructed. It has been established that the set of functions px, for which the system of eigenfunctions of the perturbed problem does not constitute an unconditional basis in L20,1, is dense within the space L20,1. Furthermore, it has been demonstrated that the adjoint operator shares a similar structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.