Abstract
In this paper we consider a spectral problem of one boundary value problem for a two-fold differentiation operator with an integral perturbation of boundary conditions of one type which are regular, but not strongly regular. The unperturbed problem has an asymptotically simple spectrum, and its system of eigenfunctions does not form a basis in L2. We construct a characteristic determinant of the spectral problem with an integral perturbation of boundary conditions. We show that a set of kernels of the integral perturbation, under which absence of basis properties of the system of root functions persists, is dense in L2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.