Abstract

Graphene nanoribbons (GNRs) and their derivatives are receiving increasing attention as a result of their unique electronic and magnetic properties, and many novel derivative structures have been fabricated. The carbon pentagon plays a crucial role in determining both geometric structures and electronic properties of carbon-based materials. Here, we demonstrate that carbon-pentagon-incorporated graphene-like nanoribbons (GLNRs), which are an important class of GNR derivatives, are successfully fabricated via the Ullmann coupling and aromatic cyclodehydrogenation reaction on the surface by a suitable choice of multiple tailored molecular precursors. Our approach provides a basis for the impact of adatoms in the reaction and proves the steering function of the aryl-metal interaction in procedures of self-assembly and organometallic state. In addition, this study paves the way for on-surface synthesis of GNRs and their derivatives as well as the fine tuning of electronic properties of carbon nanoarchitectures by manipulating the edge structures and embedding carbon pentagon heterojunctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call