Abstract

Abstract The probability generating function (pgf) B ⁢ ( s ) {B(s)} of the limiting conditional law (LCL) of a subcritical Markov branching process ( Z t : t ≥ 0 ) {(Z_{t}:t\geq 0)} (MBP) has a certain integral representation and it satisfies B ⁢ ( 0 ) = 0 {B(0)=0} and B ′ ⁢ ( 0 ) > 0 {B^{\prime}(0)>0} . The general problem posed here is the inverse one: If a given pgf B satisfies these two conditions, is it related in this way to some MBP? We obtain some necessary conditions for this to be possible and illustrate the issues with simple examples and counterexamples. The particular case of the Borel law is shown to be the LCL of a family of MBPs and that the probabilities P 1 ( Z t = j ) {P_{1}(Z_{t}=j)} have simple explicit algebraic expressions. Exact conditions are found under which a shifted negative-binomial law can be a LCL. Finally, implications are explored for the offspring law arising from infinite divisibility of the correponding LCL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.