Abstract

<abstract><p>The major objective of this scheme is to investigate both the existence and the uniqueness of a solution to an integro-differential equation of the second order that contains the Caputo-Fabrizio fractional derivative and integral, as well as the q-integral of the Riemann-Liouville type. The equation in question is known as the integro-differential equation of the Caputo-Fabrizio fractional derivative and integral. This equation has not been studied before and has great importance in life applications. An investigation is being done into the solution's continued reliance. The Schauder fixed-point theorem is what is used to demonstrate that there is a solution to the equation that is being looked at. In addition, we are able to derive a numerical solution to the problem that has been stated by combining the Simpson's approach with the cubic-b spline method and the finite difference method with the trapezoidal method. We will be making use of the definitions of the fractional derivative and integral provided by Caputo-Fabrizio, as well as the definition of the q-integral of the Riemann-Liouville type. The integral portion of the problem will be handled using trapezoidal and Simpson's methods, while the derivative portion will be solved using cubic-b spline and finite difference methods. After that, the issue will be recast as a series of equations requiring algebraic thinking. By working through this problem together, we are able to find the answer. In conclusion, we present two numerical examples and contrast the outcomes of those examples with the exact solutions to those problems.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.