Abstract
We study strong equilibria in network creation games. These form a classical and well-studied class of games where a set of players form a network by buying edges to their neighbors at a cost of a fixed parameter $\alpha$. The cost of a player is defined to be the cost of the bought edges plus the sum of distances to all the players in the resulting graph. We identify and characterize various structural properties of strong equilibria, which lead to a characterization of the set of strong equilibria for all $\alpha$ in the range $(0,2)$. For $\alpha > 2$, Andelman et al. (2009) prove that a star graph in which every leaf buys one edge to the center node is a strong equilibrium, and conjecture that in fact any star is a strong equilibrium. We resolve this conjecture in the affirmative. Additionally, we show that when $\alpha$ is large enough ($\geq 2n$) there exist non-star trees that are strong equilibria. For the strong price of anarchy, we provide precise expressions when $\alpha$ is in the range $(0,2)$, and we prove a lower bound of $3/2$ when $\alpha \geq 2$. Lastly, we aim to characterize under which conditions (coalitional) improvement dynamics may converge to a strong equilibrium. To this end, we study the (coalitional) finite improvement property and (coalitional) weak acyclicity property. We prove various conditions under which these properties do and do not hold. Some of these results also hold for the class of pure Nash equilibria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.