Abstract

The stress induced leakage current (SILC) in Si/SiO2 structures with thin gate oxides has a steady-state component which increases drastically when the oxide thickness decreases. It is generally agreed that the SILC is due to electron tunnelling trough stress-induced traps. However, it was observed that the SILC, created by Fowler–Nordheim injection, decays continuously when, after stress, the samples are positively or negatively biased at a low voltage. The decay is irreversible as long as the gate oxide is not biased at a high voltage. The present article adds complementary observations. It shows, first that the above phenomenon is observed in 3.5 nm thick oxides, secondly, that this phenomenon is stable as long as the temperature stays below 200°C, and thirdly, that during the SILC decay, the interface state density does not diminish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call